Ceramics meet Polymers – Membranes for flexible solid-state Li-ion batteries

Ceramic-polymer composite electrolytes are emerging as a promising solution to deliver high ionic conductivity, optimal mechanical properties, and good safety for developing high-performance solid-state rechargeable batteries.

Ceramic electrolytes, such as Li$_7$La$_3$Zr$_2$O$_{12}$ LLZO, have a high Li-ion conductivity, a high lithium transference number approaching 1, and are electrochemical stable. They suffer, however, from brittleness and a high interface resistance to electrodes.

In contrast, solid polymer electrolytes have high flexibility and are lightweight, but show low ionic conductivities with low lithium transference rates ($t_li = 0.3 \text{ – } 0.6$), and poor electrochemical stabilities at high voltages.\(^1\) Recently, attempts have been made to combine both materials, poly-ethylene-oxide (PEO) and LLZO in a composite electrolyte with the aim to profit from possible synergistic effects.\(^2\)

Composite electrolytes are expected to show higher mechanical flexibility, lower interface resistance towards the electrodes compared to ceramic SE, and decreased instablility of a rigid interface induced by the volume change of the electrode materials during cycling. Moreover, the rigid LLZO particles with PEO chain segments provide a mechanically robust and stable framework against the growth of dendrites. Additionally, the chemical and electrochemical performance of LLZO with Li metal allows the SE/Li interface to achieve a stable state.\(^3,4\)

Despite all the promising advantages of composite electrolytes the unfavored ion transport across the PEO-LLZO interface leads to a high resistance limiting the development of, e.g., flexible solid-state batteries.\(^5\)

The aim of this master thesis is, therefore, the lowering of the interfacial resistance between LLZO and PEO using surface modifying techniques – recently developed at the ICTM. The successful candidate will use a wide variety of techniques to prepare and characterize composite membranes, using, e.g., NMR, IR spectroscopy, impedance spectroscopy, cyclic voltammetry, and galvanostatic cycling.

Starting date: starting time as soon as possible, minimal duration 6 months

For more details, please contact:

- Dr. Daniel Rettenwander (rettenwander@tugraz.at)
- Prof. Christian Slugovc (slugovc@tugraz.at), or
- Prof. Gregor Trimmel (gregor.trimmel@tugraz.at)

References